In this paper, we construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of ∼71M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects.



If you find this repository useful in your research, please consider citing:

      title={NeuralDome: A Neural Modeling Pipeline on Multi-View Human-Object Interactions},
      author={Juze Zhang and Haimin Luo and Hongdi Yang and Xinru Xu and Qianyang Wu and Ye Shi and Jingyi Yu and Lan Xu and Jingya Wang},